On the nonexistence of linear perfect Lee codes
نویسندگان
چکیده
In 1968, Golomb and Welch conjectured that there does not exist perfect Lee code in Z with radius r ≥ 2 and dimension n ≥ 3. Besides its own interest in coding theory and discrete geometry, this conjecture is also strongly related to the degree-diameter problems of abelian Cayley graphs. Although there are many papers on this topic, the Golomb-Welch conjecture is far from being solved. In this paper, we prove the nonexistence of linear perfect Lee codes by introducing some new algebraic methods. Using these new methods, we show the nonexistence of linear perfect Lee codes of radii r = 2, 3 in Z for infinitely many values of the dimension n. In particular, there does not exist linear perfect Lee codes of radius 2 in Z for all 3 ≤ n ≤ 100 except 8 cases.
منابع مشابه
Perfect Codes in Cartesian Products of 2-Paths and Infinite Paths
We introduce and study a common generalization of 1-error binary perfect codes and perfect single error correcting codes in Lee metric, namely perfect codes on products of paths of length 2 and of infinite length. Both existence and nonexistence results are given.
متن کاملOn the nonexistence of triple-error-correcting perfect binary linear codes with a crown poset structure
Ahn et al. [Discrete Math. 268 (2003) 21–30] characterized completely the parameters of singleand error-correcting perfect linear codes with a crown poset structure by solving Ramanujan–Nagelltype Diophantine equation. In this paper, we give a shorter proof for the same result by analyzing a generator matrix of a perfect linear code. Furthermore, we combine our method with the Johnson bound in ...
متن کاملThe Poset Metrics That Allow Binary Codes of Codimension m -, (m-1)-, or (m-2)-Perfect
A binary poset code of codimension m (of cardinality 2n−m , where n is the code length) can correct maximum m errors. All possible poset metrics that allow codes of codimension m to be m-, (m − 1)-, or (m − 2)-perfect are described. Some general conditions on a poset which guarantee the nonexistence of perfect poset codes are derived; as examples, we prove the nonexistence of r-perfect poset co...
متن کاملOn Perfect Ternary Constant Weight Codes
We consider the space of ternary words of length n and fixed weightwwith the usual Hamming distance. A sequence of perfect single error correcting codes in this space is constructed. We prove the nonexistence of such codes with other parameters than those of the sequence.
متن کاملOn the Nonexistence of Perfect Codes in the Johnson Scheme
Although it was conjectured by Delsarte in 1973 that no nontrivial perfect codes exist in the Johnson scheme, only very partial results are known. In this paper we considerably reduce the range in which perfect codes in the Johnson scheme can exist; e.g., we show that there are no nontrivial perfect codes in the Johnson graph J(2w qp, w), p prime. We give theorems about the structure of perfect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.04608 شماره
صفحات -
تاریخ انتشار 2018